If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2-8k-24=0
a = 1; b = -8; c = -24;
Δ = b2-4ac
Δ = -82-4·1·(-24)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{10}}{2*1}=\frac{8-4\sqrt{10}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{10}}{2*1}=\frac{8+4\sqrt{10}}{2} $
| 6/x=15/35 | | 20/50=6/x | | r^-4=10 | | 12(8x-25)=5(16x+40-20 | | 3x-10x+6x=-9+7+6 | | 3*n=28 | | X+35+2x-25=180 | | x/216.2=4-x/216.2 | | x/120=4-x/120 | | (300/x)+20+3x=20+6x | | X⁴-4x³+7x²-6x-10=0 | | -1-5(7-6n)=-3n-3 | | 7(5n-3)=22-8n | | 25+5n=6(7n-2) | | -11+3p=2(p-3) | | 10=8h,h= | | 14-3x=2x+6 | | 19.45=8.6r-12.8 | | 200/x+20+2=20+5x | | 60=0.5×s | | 3t+25=1 | | 18a+9=-9 | | 2(12a-7)=42 | | 5x-4=2x+4+6 | | -15=-5x+0.4(30-3x | | -15h=-5h+0.4(40-3h) | | 3x^2+48-780=0 | | 14x+1=74 | | 5x-4=2(x+2)+6 | | 1+x÷1-x=⅔ | | x+3x+x/3=88 | | 40=2(5x+x) |